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1. Introduction

Until about eight years ago, analyses of the structure and behavior of the

upper stratosphere and of the mesosphere were based on rather indirect ground-

based observations and on infrequent rocket soundings from isolated sites.

Ground based observations resulted in the description and understanding of only

the most basic physical processes of that region of the atmosphere: the absorp-

tion of near-ultraviolet solar radiation resulting in the temperature maximum

at the stratopause; the photochemistry and transport phenomena responsible for

the distribution of ozone and of atomic oxygen in the upper stratosphere and

mesosphere; the predominant radiative cooling of the mesosphere resulting in

very low temperatures near the mesopause; the accumulation of particles near

the mesopause at high latitudes in summer which relate to the noctilucent cloud

phenomenon; and the generally easterly winds during summer, alternating with

predominantly westerly flow in winter throughout the upper stratosphere and

lower mesosphere.

From occasional rocket soundings during the IGY and during subsequent

years we have learned: that the temperature structure varies with latitude and

season such that at high latitudes during summer, maximum temperatures near

50 km and minimum temperatures near 80km are extremely pronounced while

in winter the temperature extremes at these levels are much less distinct; that

the temperature structure in the mesosphere in winter displays large, short-

term local variations; that the circulation of the atmosphere up to 70km follows
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patterns of high and low pressure systems which may bring about the onset of

sudden stratospheric warmings; and that the general concept of the meridional

circulation in the mesosphere, with upward motion over the summer pole and

downward motion over the winter pole, which was derived theoretically, is

basically correct.

' HoweVer, until recently, observations were lacking to describe the structure

and phenomena of this region in greater detail and on a truly global scale. Sys-

tematic exploration of the atmosphere up to about 100 km began in the mid-1960's

with simultaneous, seasonal rocket soundings distributed along latitude circles,

almost around the globe or along meridians from the equator to high latitudes.

This became possible because of the evolution of relatively simple and econom-

ical rocket instruments for the direct measurement of such parameters as pres-

sure, temperature, wind, and ozone, and because of the strong interest in ex-

ploring this part of the atmosphere by many nations around the world. Also,

during these recent years, meteorological satellites have carried "remote

sensors" such as spectrometers and image forming radiometers which have per-

mitted the observation of temperature patterns in the stratosphere, the distribu-

tion of ozone, and the variation of solar radiation absorbed in the mesosphere on

a daily basis over the entire globe.

The systematic rocket soundings and global surveys by satellites have re-

sulted in considerably better descriptions of the structure of, and in better

understanding of processes in the stratosphere and mesospherethan was possible
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before. For example, from continuous observations with NIMBUS 3 and 4 since

April, 1969, we have been able to determine the correlation of variations in the

intensity of ultra violet solar radiation between 1200 and 1800A with the 27 day

rotation period of the sun and with other solar activity, while no such correlation

was observed at longer wavelengths. The genesis and morphology of strato-

spheric warmings has been observed with TIROS and NIMBUS satellites during

numerous occasions in both hemispheres and on a global scale since 1963. Ozone

distributions have been measured with NIMBUS 4 up to 50km, daily and globally,

since April, 1970. Systematic rocket soundings established a relationship be-

tween the occurrence of noctilucent clouds and the mesospheric temperature

profile. They also demonstrated the vertical propagation of wavelike phenomena

and of tides through the mesosphere, and measured the changes in the distribu-

tion of ozone between day and night as well as during the polar night up to 70km.

In the following discussion, a brief description of the techniques involved in

these observations and- a survey of the results, many of which are still prelim-

inary, will be given. The discussion will be limited to those techniques and re-

sults dealing with rocket and satellite programs conducted or sponsored by the

National Aeronautics and Space Administration (NASA) of the U. S. A.

2. Techniques for Measuring the Composition, Thermodynamic Structure and

Motion Field of the Neutral Atmosphere up to 80 km

Observations of the upper atmosphere are carried out in complementary

fashion: Rocket soundings provide measurements with detailed resolution and
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accuracy along the vertical scale, but they cannot be deployed in sufficient num-

bers to provide more than a coarse picture on the horizontal and time scales.

Conversely, as many as several thousand satellite observations of temperature

or ozone distribution with height are being made daily over the entire globe, but

in the vertical scale, each measurement is usually averaged through an interval

of 5-10km. Thus, satellite observations now provide for an unprecedented num-

ber of measurements (especially of temperature and ozone in the stratosphere)

on a global scale, while rocket soundings complement and supplement these ob-

servations with detailed measurements of the vertical structure and of para-

meters such as winds which are not yet observable with satellites.

2. 1 Rocket Techniques

Generally, instruments for measuring temperature, density pressure,

composition and winds in the upper stratosphere and mesosphere are carried on

two-stage sounding rockets of the Nike-Cajun type. Some observations are

based on direct measurements such as those of temperature and pressure with

thermistor and electrical gauges, respectively, and the measurement of ozone

by means of chemical reactions with substances carried aloft by rockets. Other

observations are derived from indirect measurements such as temperature

from the measured speed of sound propagation, density from the measured ac-

celeration of spheres dropped from rockets, and ozone from the attenuation of

solar radiation. Winds are usually measured by tracking the horizontal drift

of objects such as smoke, chemicals, chaff, or parachutes released from rockets,
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or of sound waves propagating through the atmosphere. The following techniques

have produced significant measurements of the structure of the upper strato-

sphere and mesosphere during the past several years. About 50 of the larger,

two-stage rockets are launched every year to heights of about 100 km from sev-

eral sites between the Equator and Alaska to measure temperature, pressure,

density, wind, and ozone. Many more smaller rockets (several per week from

about 14 sites and one or two per month from a few additional sites in the

Americas) provide temperature and wind soundings up to about 60km.

2. 1. 1 Radar Tracking of Chaff

A vertical profile of the horizontal winds and wind shears can

be obtained by tracking the horizontal drift of falling chaff with a radar (Warner

and Bowen, 1953). Chaff consists of a large number (-106) of dipole reflectors,

usually fine wire or electrically conductive thin ribbon which is cut to half the

wavelength of the tracking radar to improve its reflectivity, and is most often

deployed in the 60-100km altitude region by Loki-class rockets. Considerations

of desired fall rate and altitude determine the type of chaff used, but all chaff

inherently begins to disperse after falling 20-30 km, so that the radar no longer

has a single target and tracking becomes unreliable (Beyers, 1969).

2.1.2 Thermistor Dropsondes

Dropsonde instruments containing immersion temperature

sensors are ejected from Arcas-class rockets near apogee to measure (and

telemeter) the ambient temperature of the atmosphere as they descend on para-

chutes or other drag devices from about 60 to 20km (Ballard and Rofe, 1969).
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The pressure profile can then be obtained by the upward integration of the hydro-

static equation using the measured temperature profile and a balloonsonde pres-

sure measurement; the density profile can be calculated from the equation of

state (Nordberg and Rasool, 1968). Radar tracking of the metallized parachute

provides a wind profile as the sonde descends. The temperature sensor most

commonly employed is a 10 mil bead thermistor which has a rapid time response,

but at altitudes above 45 km, it is subject to errors caused by radiation, aero-

dynamic heating, heat conduction from the payload, etc. When the parachute

undergoes high fall velocities at the upper altitudes, it does not respond to wind

shears effectively.

2. 1.3 Falling Spheres

Falling spheres are used as sensors to measure density pro-

files in the upper atmosphere. Although several variations of the sphere tech-

nique are used, i.e., rigid or inflatable, the passive type deployed from a small

meteorological sounding rocket near apogee is the most common (Wright, 1969).

This sphere is tracked by radar as it falls through the 100 to 35 km altitude

range, providing density and, below 70km, winds also. Changes in the fall rate

of the sphere are measured by the radar and, with the use of aerodynamic theory,

are interpreted in terms of an atmospheric density profile. Using the density

profile derived from the measured accelerations of the falling sphere, the hydro-

static equation can be integrated downward to produce a temperature profile.

A pressure profile can be calculated from the density and temperature profiles
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using the equation of state. Active spheres contain accelerometers and telem-

etry instrumentation, and rely on radars for altitude discrimination and wind

determination only. However, these systems dictate the use of larger, Nike-

Cajun class rockets to deliver the payload to the desired altitude.

2. 1.4 The Pitot Probe Technique

The pitot probe technique utilizes pressure sensors mounted

in the forward tip of the payload to measure the impact pressure as the Nike-

Cajun class rocket ascends through the 30 to 120km region of the atmosphere

(Ainsworth, et al., 1961). The pressure measurements are telemetered to the

ground. The impact pressure profile is used, with appropriate aerodynamic

theory, to derive a profile of atmospheric density. The temperature profile is

calculated by integrating the hydrostatic equation downward using the derived

density profile and the: pressure profile is obtained from the equation of state

(Horvath, et al., 1962). This technique provides data with 0.5 km vertical res-

olution, but no wind measurement.

2.1.5 The Acoustic Grenade Technique

In the grenade technique, explosive charges (grenades) vary-

ing in weight from 0. 1 to 1. 8 kg are carried aloft in the nose cone of a Nike-

Cajun rocket. Up to 31 grenades are ejected and detonated at 2 to 4 km intervals

as the rocket traverses the 35 to 95 km region of the atmosphere (Nordberg and

Smith, 1964).

The position of the rocket, and therefore of each explosion, is

determined by a Doppler tracking system or a high precision radar such as the
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FPQ-6, or both. The time of each explosion is detected by sensors in the pay-

load and telemetered to the ground. A ground based array of hot-wire micro-

phones, capable of responding to frequencies between 1-20 Hz, is used to detect

and record the arrivals of the sound waves generated by the exploding grenades.

The times and positions of the grenade explosions, and the arrival times of the

sound waves at the ground based microphones are measured.

The elevation and azimuth angles of the normal to each arriv-

ing spherical sound wave front are computed by applying a least-squares-fit to

the arrival times at the various microphones. Each wave front is then analyti-

cally traced back along its path of propagation through the atmosphere by means

of Snell's Law. Wind and temperature data from balloon sondes and rocket

sondes below the grenade explosions are used to trace the path of the sound wave

from the ground to the level of the first explosion; above this altitude, the re-

sults of the grenade sounding itself are used for each succeeding explosion. The

origin of the sound wave as determined by ray tracing is compared with the

known position of the explosion, and the horizontal difference by which the sound

wave has been displaced from one explosion to the next is a measure of the aver-

age wind velocity in the layer bounded by the two explosions. The average speed

of sound, and hence the average temperature of the atmosphere between adjacent

explosions, may also be determined. The temperature and wind profiles con-

sist of discrete points, each representing the average temperature and average

wind, respectively, of the vertically stacked horizontal layers between consecutive

8
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explosions. The pressure profile is derived from the temperature profile, us-

ing the pressure measured by an accompanying balloon sonde as a reference

value. Pressure is calculated as a function of altitude from the hydrostatic

equation, by integrating the pressure upward over the temperature profile. The

density is then calculated as a function of altitude from the temperature and

pressure using the equation of state.

2.1.6 Ozone Sondes

2.1.6.1 Optical

The most common ozone sensing technique measures

the intensity of sunlight or moonlight as a function of height with photometers

at one or more wavelength bands between 2500 and 3500A. The method is char-

acterized by its absolute accuracy; in a dropsonde configuration, the ozone con-

centration can be measured with 10 percent accuracy with one kilometer resolu-

tion throughout the stratosphere. Early experiments used spectrographs

(Johnson, et al., 1952), but filter photometers are used now, since narrow band

interference filters have been developed in that spectral region. Ozone concen-

trations are computed by iteration from the attenuation of radiation intensity

with height in each spectral channel (Paetzold, 19.61 a). For soundings through

the height region of 20 to 60km, a minimum of two optical filters is required.

This technique has been developed for routine daytime use on small rockets by

several investigators. The dropsonde approach, in which the instrument is de-

ployed on a parachute at apogee, has been pursued by Krueger and McBride
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(1968) in the United States, and by Sissons (1968) and Beach (1970) in Australia.

More than 20 soundings have been made by the American group using Arcas rock-

ets. Soundings have been conducted to survey the latitudinal and temporal changes

in the ozone distribution, and to provide reference data for calibration or veri-

fication of satellite ozone measurements.

An alternate approach has been taken by Nagata, et

al., (1970) in Japan who make measurements from the rocket during ascent.

Five soundings have been reported to date. Weeks and Smith (1968) have used

a single channel radiometer at 2550 A on larger sounding rockets to monitor

ozone above 50 km in conjunction with other experiments.

Night-time ozone has been measured optically by

Reed (1964) in the U. S. and by Carver (1966) in Australia. Reed's experiment

was unusual in that the UV airglow was used as a light source.

2.1.6.2 Chemical

In contrast to optical techniques, where natural light

sources are required, chemical ozone probes can be used routinely at night.

Nocturnal ozone soundings of the mesosphere provide information on the in-

crease of ozone concentration due to "three body" collisions of 0 with 02 and

the absence of dissociating radiation. This technique has also been used to ob-

serve ozone variations in the mesosphere during the polar winter night.

A chemiluminescent sonde dropped from a rocket on

a parachute (Hilsenrath, et al., 1969) makes measurements of ozone from 70 to
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15km. It uses a principle first discussed by Beranose and Rene (1959). Ex-

posure of a chemiluminescent material (Rhodamine B) to ozone causes lumines-

cence which is proportional to the ozone concentration and the sampling rate.

The atmosphere is sampled by self pumping as the sonde descends on a specially

designed parachute. A ballast chamber is connected to the ambient atmosphere

through an inlet pipe and is initially in pressure equilibrium with the atmosphere.

The sensor is released at apogee and as it descends through the atmosphere on

the parachute, the pressure inside the ballast chamber is lower than the increas-

ing external pressure, resulting in a net flow of gas through the inlet pipe. The

chemiluminescent detector and a photometer are positioned along the inlet pipe;

thus, the ambient atmosphere is continuously sampled. Photometer, pressure,

and flow rate data are telemetered to the ground during the entire parachute de-

scent. Ozone mixing ratios vs height are derived from the measured light in-

tensity. Calibration of the sensor is performed by exposing the instrument to

known concentrations of ozone at pressures and flow rates that are expected to

occur during the flight. Numerous laboratory studies have been performed to

establish the validity of the method and to verify the assumptions upon which it

is based. These studies have also demonstrated that under flight conditions,

the sonde will not be affected by atomic oxygen.

2.1.7 Atomic Oxygen Probes

A sensor for measuring the height profile of oxygen atoms

from approximately 70 to 100 km has been developed by Henderson and Schiff
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(1970). This sensor consists of a thin film of silver deposited on a pyrex rod

which is sufficiently small to permit free molecular flow of atomic oxygen onto

its surface at the measurement altitude range. As the sensor is exposed to the

ambient atmosphere during the rocket ascent, the atom flux is determined from

the rate of change of the electrical resistance of the silver film. This informa-

tion is telemetered to the ground during the rocket ascent. Laboratory measure-

ments indicate that this technique is accurate to at least 25 percent.

2.1.8 Water Vapor Probes

A promising technique for water vapor measurements in the

mesosphere is a rocket-borne aluminum oxide hygrometer (Chleck, 1966). The

hygrometer consists of a thin aluminum foil strip that has been anodized. A

coating of gold is vacuum deposited over this strip, to produce an aluminum ox-

ide capacitor. Changes in the ambient water vapor pressure result in corre-

sponding changes in the electrical impedance of the sensor. The measurement

range is from approximately 300 K to 150 K dew/frost point temperatures with

an error of about ±2 K at the lower temperature

This hygrometer, which has been flown routinely on a jet air-

craft, has produced continuous water vapor data from the ground to just above

the tropopause. (Hilsenrath and Coley, 1971). Balloon flights have yielded data

in the lower stratosphere. Rocket flights to measure water vapor concentra-

tions in the mesosphere are planned for 1972.
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2.2 Satellite Techniques

All observations of the atmosphere below 100km from satellites are

necessarily based on indirect measurements. They permit the derivation of

atmospheric composition or temperature from radiometric measurements of the

spectral attenuation of either direct solar radiation or of solar radiation reflected

by the'Earth, and from spectral measurements of infra-red and microwave radi-

ation emitted by the upper atmosphere. Both methods have been employed suc-

cessfully on meteorological satellites for the United States (TIROS and NIMBUS)

to make observations of temperature and ozone up to about 50km. In addition,

the spectral intensity of incident solar radiation between 1200 and 2600A was

measured with such satellites. These techniques are described below.

2.2. 1 Broad-Band Infra-Red Radiometers for Mapping Stratospheric

Temperatures

The first satellite observations of global stratospheric temper-

ature fields were based on measurements of the radiant emittance of the atmos-

phere in the spectral interval 14. 8-15. 5pm (Kennedy and Nordberg, 1967). They

were obtained by TIROS 7 during June, 1963 to November, 1964. The radiome-

ter consisted of a thermistor bolometer, filters, light gathering mirrors and

lenses, and associated electronics. The instantaneous field of view was approx-

imately 5 x 5 degrees which was scanned across the surface of the Earth by the

spinning motion of the satellite. A description of this instrument is contained in

the TIROS VII Radiation Data Catalog and User's Manual (1964). During each
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12 hour period which corresponded to 14 consecutive orbits, the instrument ob-

served the entire zone of the Earth between 65 N and 65 S. Thus, radiation pat-

terns over this "quasi global" zone could be mapped by the satellite every 12

hours. Practically, however, the time interval during which full coverage was

achieved ranged over several days because measurements could not be trans-

mitted to the ground for each and every full orbit. Also, the spatial resolution

of the measurements was considerably coarser than that ideally possible: al-

though each instantaneous radiation measurement corresponded to an area of

50 x 50km on the surface of the Earth, the radiometric accuracy of such a meas-

urement when converted to equivalent black-body temperatures was generally

poorer than i5 C, and required the averaging of many hundred measurements

over larger areas and longer time periods. This resulted in nearly full cover-

age of the "quasi globe" with a relative accuracy of better than -1 C in periods

of about 10 days.

The radiant emittances measured by the satellite sensor in

this spectral interval (14. 8-15. 5 m) were primarily due to thermal emission in

the vibration-rotation band of carbon dioxide. It was assumed that carbon diox-

ide is distributed uniformly throughout the upper troposphere and stratosphere.

Also, assuming a typical temperature profile for the troposphere and strato-

sphere such as that given by the U. S. Standard Atmosphere (1962), one may

compute for any given height interval in the atmosphere, the radiant emittance

which is transmitted to the satellite within this spectral interval. The result of
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such a computation shows that more than 90 percent of the total radiation sensed

by the satellite is emitted by the atmosphere above 10 km. More than 70 percent

of that total radiation is emitted at heights between iO and 30km. Thus, if the

measured radiant emittances are converted to equivalent black-body tempera-

tures, they can be generally interpreted as 'atmospheric temperatures averaged

over the height range from 10 to 30km. Equivalent black-body temperature is

defined here as the temperature of an isothermal black-body filling the field of

view of the sensor which would cause the same response from the radiometer as

does the radiation emerging from the top of the atmosphere in the direction of

the satellite.

A similar technique was also used with NIMBUS 2 between

April and July, 1966. In this case, the spectral interval was somewhat wider

than in the previous experiment on TIROS 7. This resulted in considerably more

accurate measurements, but decreased the height range of the temperature meas-

urements to somewhat lower altitudes than with TIROS 7. Maximum radiation

was received from near the 16km level and about 75 percent of the radiation

emanated from above 10km.. This permitted inferences of average temperatures

in the upper troposphere and lower stratosphere. (Nordberg et al., 1966). In

contrast to TIROS 7, NIMBUS satellites were fully stabilized such that the radi-

ometer viewed the earth at all times. Scanning across the Earth was therefore

achieved with a rotating mirror in front of the radiometer optics (Nimbus II

Data User's Guide, 1966).
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2.2. 2 Infra-Red Spectromneters for Measurements of the Tempera-

ture and Ozone Distributions in the Stratosphere

Nimbus 3 carried two and Nimbus 4 carried three spectrome-

ters which measured, among other quantities, spectral radiances in the 14.5 to

15p#m wavelength range from which temperatures in the stratosphere could be

derived. In contrast to TIROS 7 and NIMBUS 2, these instruments provided a

very high spectral resolution (5 cm-1 or better) and measurements were made in

more than one spectral channel in the 14.5-15, 0#Mm interval which allowed de-

rivations of temperatures at different heights in the stratosphere.

The Satellite Infra-Red Spectrometer (SIRS) of Wark and

Hilleary (1969) obtained measurements relating to stratospheric temperatures

in two discrete spectral intervals. Radiances in several additional wavelengths

shorter than 14. 5pm were also measured from which the temperature profile in

the troposphere was derived. The SIRS instrument is a conventional diffraction

grating spectrometer, and has been described in detail in the NIMBUS 3 (1969)

and NIMBUS 4 (1970) User's Guides. On NIMBUS 3, it measured radiances from

the atmosphere in a narrow strip about 200km' wide along the sub-satellite track.

On NIMBUS 4, the 11 degree field of view was scanned to 38 degrees on each side

of the satellite track. Two observations per day were made at every latitude

from 81 N to 81 S: once near noon, and once at night near midnight. The in-

strumental accuracy was such that each measurement yielded temperatures of

a 200 x 200 km area up to an altitude of about 40km within about 41 C. Measure-

ments with the SIRS have been made continuously since April, 1969.
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The Infra-Red Interferometer Spectrometer (IRIS) by Conrath

et al., (1970) obtained measurements of spectral radiances over the entire range

from 6 to 20/am which included not only the wavelengths from 14. 5 to 15,um from

which stratospheric temperature could be derived, but also the emission from

ozone between 9 and 10gnm. The instrument was a Michelson Interferometer with

an 8 degree field-of-view which pointed 2 degrees ahead along the sub-sateilite

track at the beginning of an interferogram. At the end of the interferogram, or

ten seconds later, the field-of-view was directed about 2 degrees behind the sub-

satellite point. Therefore, the radiation contained in a single interferogram

originated from a circular area, about 150 km in diameter. Spectra were ob-

tained by Fourier analyses of the interferograms. About 4000 spectra, each

containing information on stratospheric temperatures and total ozone amounts,

were obtained daily. Measurements have been made with NIMBUS 3 continuously

from April to July, 1969, and with NIMBUS 4 since April, 1970.

The third instrument on NIMBUS 4 to measure stratospheric

temperatures was a Selective Chopper Radiometer (SCR), by Ellis et al., (1970).

The object of the Selective Chopper Radiometer (SCR) was to determine the tem-

perature of the atmosphere from the surface of the Earth or cloud top level to

60km height. Temperature soundings were achieved by observing the emitted

infrared radiation in the 15g#m band from atmospheric carbon dioxide. Height

resolution was obtained by a combination of optical multi-layer filters, and

selective absorption of radiation using carbon dioxide-filled cells within the
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experiment. The four lower channels consisted of a cantilever-mounted blade

shutter which oscillated at 10 Hz and successively chopped the field-of-view be-

tween earth and a cold reference source (space). The chopped radiation was

then passed through a 10 cm path length of carbon dioxide, the pressure being

set for each channel to define the viewing depth in the atmosphere. Behind the

CO2 path was a narrow band filter, the centers of which were different for each

channel, and a light pipe which converged the radiation on a thermistor bolome-

ter detector. In order to obtain adequate height resolution in the upper layers

of the atmosphere, the upper two channels operated as double cell channels,

switching the radiation between two half-cells, semicircular in shape and of 1 cm

path length, containing different pressures of carbon dioxide. The oscillating

shutter used in the four lower channels was replaced by a vibrating 45 degree

mirror. During one half-period, earth radiation passed through one half-cell

and space radiation through the other; the situation was reversed during the

other half-period. This system assumed that, apart from the CO02 pressures,

both halves of a cell had equal optical transmissions. A special in-flight calibra-

tion procedure, known as "imbalance calibration" was required to verify this

assumption.

Radiances measured by any of these instruments could be con-

verted to temperatures of stratospheric layers, each corresponding to a given

spectral interval, similar to the broad band measurements made earlier with

TIROS 7 and NIMBUS 2. However, itwas also possible to "invert" simultaneously
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measured radiances in different spectral intervals to continuous profiles of

atmospheric temperatures with height. This was based on the fact that radiation

near the center of the carbon dioxide absorption band (15gm) is emitted at higher

altitudes (30-60 km) than radiation in the weaker absoprtion portion of the C02

spectrum, such as near 14. 4gm, which is emitted from an altitude range from

about 7 to 20 km.

It was first pointed out by King (1958) and Kaplan (1959) that

vertical temperature profiles could be obtained from remote infrared measure-

ments. Since then, analytical techniques have been developed by which estimates

of temperature profiles' could be obtained from actual radiance measurements

(Wark and Fleming, 1966; Rodgers, 1966; Strand and Westwater, 1968; Conrath,

1968, Chahine, 1968). These retrieval techniques can be divided into two gen-

eral categories: techniques which utilize only the radiances measured from the

satellite, and statistical techniques which, in addition to the satellite measure-

ments, employ statistical information on the behavior of the atmospheric tem-

perature profiles. Measurements with the SIRS and SCR were "inverted" to

temperature profiles by means of statistical analyses (Smith, 1969 and Ellis et

al., 1970, respectively). A nonstatistical method, based on an iterative comu-

tational technique developed by Chahine (1968) was used for the inversion of

IRIS measurements.

The emission of radiation by ozone in the 9-10gm band which

was measured with the IRIS Was used to extract information on the total amount
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and the vertical distribution of ozone (Prabhakara, 1969). A representation

containing free parameters was assumed for the vertical distribution of ozone,

and the free parameters were evaluated by making a least squares fit of the

theoretically calculated radiances to the measured radiances in the ozone band.

The vertical ozone distribution was represented in terms of empirical orthogonal

functions or characteristic patterns (Obukov, 1960; Mateer, 1965). The empir-

ical orthogonal functions were calculated from ensembles of historical ozone

profiles obtained with ozone sondes. From the spectral resolutions and accu-

racies of the radiation measurements obtained in the IRIS experiment, essen-

tially only one parameter of the ozone distribution could be derived. This was

the expansion coefficient of the first empirical orthogonal function. While such

a representation provided only relatively crude information on the vertical dis-

tribution of ozone, it did, however, permit a meaningful estimate of the total

ozone.

2.2. 3 Spectrophotometers to Measure Backscattered Ultra-Violet

(BUV) Solar Radiation for Determination of Ozone and its

Vertical Distribution

An experiment for obtaining the spatial distribution of atmos-

pheric ozone on a global scale, by inversion of measurements of ultraviolet

radiation backscattered by the atmosphere, completed one year of continuous

operation aboard NIMBUS 4 in April, 1971.

The instrument consists of a double (tandem) Ebert-Fastie

spectrophotometer in conjunction with a narrow band interference filter photometer.
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Both of the instruments view along the nadir direction of the spacecraft. The

spectrophotometer measures spectral intensities at 12 wavelengths from 2555A

with a 10A band pass. - The interference filter photometer measures a 50A band

centered at 3800/A. A depolarizer is inserted in front of the entrance slit of the

spectrophotometer to eliminate any effects due to its polarization properties.

The double monochromator is composed of two 25 cm focal length Ebert-Fastie

monochromators. Light entering the entrance slit is rendered parallel by a

spherical collimation mirror and is then diffracted by a 52 x 52 mm grating of

2400 grooves mm -1 (solid angle is 0. 043 steradians). The diffracted light re-

turns to the spherical collimating mirror, passes through a roof prism, and is

imaged onto an intermediate slit. The light passing through the intermediate

slit is dispersed again by a second monochromator. A field lens at the exit slit

is used to image the grating onto the photocathode of a photomultiplier. Both

gratings are mounted onto a common rigid shaft so that no wavelength tracking

error can occur between the two monochromators. A roof prism is used to in-

vert the image in the direction of dispersion at the intermediate slit. This is

necessary if one is to double the dispersion in passing through the second mon-

ochromator. When passing over the polar regions, diffuser plates are deployed

in front of the spectrophotometer and the filter photometer to view the sun for

calibration.

The primary reason for using a double monochromator is to

obtain the desired spectral purity, i. e., the elimination of scattered light, which

21



permits one to use a high quantum efficiency ( >20 percent for the 12 wavelengths)

photomultiplier tube with a dark current of the order of 10- 11 amp at a gain of 106.

A secondary reason is that the abberations at the exit slit are much less than

those produced by a single monochromator. In addition, the use of a double dis-

persion system permits one to double the slit width while maintaining the band

pass of a single dispersion system. Since the radiation energy throughput in-

creases with the square of the slit width, the transmission losses in passing

through the second half of the double monochromator are almost offset by the

doubled dispersion.

The problem of measuring the Earth radiance in terms of a

laboratory standard of spectral irradiance is illustrated in Figure 2. 2. 3. 1. The

standard of spectral irradiance (1000 watt, quartz-iodine lamp) and the solar

irradiance decrease by only an order of magnitude from 3200 to 2500 A while the

Earth radiance decreases by more than 103 .over this wavelength interval. In

addition, one must either know the polarization characteristics of the measure-

ment equipment or make it insensitive to the polarization of the incident radia-

tion, since for single scattering the polarization of the Earth radiation may be

as much as 60 percent at 60 degrees from the sun. The BUV double monochro-

mator uses a Lyot type depolarizer to make it insensitive to the state of polarization.

Because ozone absorption is very strongly wavelength depen-

dent through much of the middle ultraviolet, observations of backscattered en-

ergy at several wavelength bands in this spectral region provide a mechanism
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for scanning through the atmosphere in the vertical. This wavelength effect is

illustrated in Figure 2. 2. 3. 2 which shows the relative amount of energy back-

scattered at various levels in the atmosphere for 8 of the 12 wavelengths meas-

ured by the NIMBUS 4 BUV instrument. As wavelength increases, the absorp-

tion coefficient decreases, and there is an increase in the depth of penetration

of the solar radiation into the atmosphere. Each curve has been normalized to

unity at the level of maximum contribution and the area between the curve and

the y-axis is directly proportional to the backscattered energy observed at the

spacecraft. The curves are based on a mid-latitude ozone distribution having

total ozone of 0. 336 atm-cm as measured by Hering and Borden (1965).

According to Figure 2. 2, 3.2, the radiance measurements con-

tain information about vertical ozone distribution from the earth's surface up to

about 60km. However, because of the rather large half-width of the curves, the

random errors introduced by the instrument, and random deviations in the at-

mosphere during the period of measurement, a fundamental limitation is placed

on the vertical resolution that can be obtained by the inversion of these measure-

ments[Wei (1962), Mateer (1965), Twomey (1965, 1966)], especially at lower

altitudes where the resolution is particularly poor because of the bimodal nature

of the weighting curves (e.g., 3058,A). Therefore an iterative scheme (Mateer,

1971) is used in the derivation of the total amount of ozone assuming certain

statistics for its vertical distribution, and using the measured ratios of Earth

radiance to solar irradiance at each wavelength. Total amounts of ozone can be

determined to an accuracy of about 5 percent.
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The distribution of ozone with height above 30 km is determined

by means of an iterative inversion of the measured radiance ratios at wavelengths

shorter than 2976XA. For altitudes below 30km statistical methods (Strand and

Westwater, 1968) may be used to infer the ozone distribution with height.

2.2.4 Photometers to Monitor Ultraviolet Solar Energy

A Monitor of Ultraviolet Solar Energy (MUSE) experiment was

flown on NIMBUS 3 and NIMBUS 4. A detailed description of these observations

has been given by Heath (1971). The absolute solar flux in the 1100-3000A re-

gion has been measured continuously since April, 1969. Each of the five wave-

length intervals was several hundred Angstroms wide. Solar energy in this re-

gion represents the major radiative energy input into the lower thermosphere,

mesosphere, and upper stratosphere. This wavelength range also covers the

transition from photospheric to chromospheric radiation which passes through

the region of the solar temperature minimum. The instrument consists of five

vacuum photodiodes, each with a nominal 90 degree field of view. The sensors

are fully illuminated by the sun for about 20 minutes of each orbit, and they view

the sun at near normal incidence on every crossing of the terminator in the north

polar regions. The angle of solar illumination to the normal of the face of the

sensors is measured precisely with a solar aspect sensor. The short wavelength

response is determined by a suitable radiation resistant optical filter. The long

wavelength cutoff is achieved through the use of photocathode materials of vary-

ing degrees of "solar blindness."
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3. Results of Observations

3. 1 The Mean Thermodynamic Structure and Circulation of the Mesosphere

from Rocket Soundings

The mean profiles of temperature and pressure were computed from

227 soundings carried out from five sites which covered a wide range of geo-

graphical latitudes during all seasons. The launch sites included: Natal, Brazil

(6 S) and Ascension Island (8 S) which were combined to represent a tropical re-

gime; Wallops Island, Virginia, U.S.A. (38N) representing a temperate regime;

Churchill, Manitoba, Canada (59 N) representing a subarctic regime; and Point

Barrow, Alaska, U. S. A. (71 N) representing an arctic regime. (See Smith, et

al., 1964, 1966, 1967, 1968a, 1969, 1970, 1971).

Soundings conducted in December, January, and February were aver-

aged to produce mean winter profiles, those conducted in June, July, and August

were averaged to produce a mean for summer, and those in March, April, May,

September, October, and November were averaged to produce mean profiles

for the transition seasons at the Wallops Island, Churchill, and Barrow sites.

Since only a very small seasonal dependence was detected in the Natal-Ascension

soundings, the data for all months were averaged together to produce a mean

annual profile for the tropics. The numbers of soundings and the months in-

cluded in each model are listed in Table 3. 1. 1 (see p. 79). Profiles are shown

in Figure 3. 1. 1.

The mean temperature profile for the tropical sites, indicates a mean

stratopause temperature of about 260 K, and an indistinct mesopause of about
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200K at 80 km. The mesospheric lapse rate is small and no substantial sea-

sonal effect is observed. The mean seasonal temperature profiles for the mid-

dle latitudes (Wallops), indicate that the stratopause temperature is higher than

270 K during all seasons. The mean mesopause temperature is 180 K in summer

and about 200 K in winter. Note that the structure in the mesosphere is more

disturbed than in the tropics during all seasons, and that distinct differences

occur with the change of season. The mean seasonal profiles for the subarctic

site (Churchill), show an even more pronounced seasonal variation of tempera-

ture. The mean summer stratopause temperature exceeds 270K while the mean

winter stratopause temperature is only about 250 K. The mean mesopause tem-

perature is as low as 150 K in summer, while in winter, the mesopause is un-

discernable; during winter, the mean temperature above the stratopause is

never lower than 195 K. The mean profiles for the arctic site (Barrow) show a

40 C variation of the stratopause temperature, and a 80 C variation in the meso-

pause temperature with season. Note the smooth, steep lapse rate in summer

and the very cold (140 K) mean mesopause temperature. The winter profile, on

the other hand, shows a very shallow lapse rate, and a warm upper mesosphere.

Comparisons of these data with the U. S. Standard Atmospheres Sup-

plements (1966) demonstrate that some substantial differences exist between the

statistical mean of these observations and the "Standard" profiles for the corre-

sponding latitude and season (Theon et al., 1970). Of course, the argument can

be made that the observations are valid for only one station while the standard
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model is an attempt to give a representative value for a given latitude (i. e.,

all longitudes). However, the standard profiles were drawn from earlier ob-

servations which were sparser than the data reported here, and, as is evident

from recent observations, conditions at any one latitude vary greatly with

longitude.

Quasi-meridional cross-sections along a diagonal path traced across

the North American continent from Barrow southeastward through Churchill,

Wallops Island and across the western Atlantic Ocean to Natal have been drawn

from seasonal mean profiles of Figure 3. 1. 1. The resulting temperature cross-

section, shown in Figure 3. 1. 2, forms an organized pattern dominated by the

warm stratopause and cold mesopause of the high latitudes in summer, and the

almost isothermal structure of the high latitudes in winter. These features are,

in general terms, similar to the earlier models of Murgatroyd (1957) except that

the high latitude summer stratopause and mesopause are colder than in Murgatroyd's

model. Figure 3. 1. 2 is also similar to the cross section given in the U. S.

Standard Atmospheres Supplements (1966) except that the winter mesosphere

shown here is colder.

Combining the mean seasonal pressure profiles into the same quasi-

meridional cross-section, results in Figure 3.1.3. Here the values are shown

in percent difference from the U. S. Standard Atmosphere, 1962. Note that the

zero percent difference line (i. e., exact agreement with the standard) is most

nearly approximated by a low latitude pressure profile in winter, while a well
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developed low pressure region dominates the winter mesosphere at higher lati-

tudes and a high pressure region dominates the summer mesosphere. These

latitudinal pressure differences drive the mean circulation in the mesosphere,

and are consistent with the observed winds. The low pressure (cyclonic) region

in the winter mesosphere underlies a high pressure (anticyclonic) region, and

the high pressure region in the summer mesosphere underlies a low pressure

region. This vertical alternation of pressure systems closely resembles the

patterns observed in the troposphere, but the vertical scale sizes are much

larger in the upper atmosphere. The patterns shown in Figure 3. 1. 3 are not

necessarily an exact description since we expect that the latitudinal and vertical

extent of these systems varies with longitude. Such variation cannot be deter-

mined from the observations shown here, since they were made only over a very

limited longitudinal segment. Nevertheless, the basic nature of the atmospheric

mass distribution in the mesosphere is quite evident. For example, latitude

zones where the tightest horizontal pressure gradients are shown in Figure 3. 1.3,

namely, near 60km at 45° in winter, are also zones where the most intense

zonal winds occur. This is consistent with the observed wind fields. An anal-

ysis of the circulation of the mesosphere was made by Theon and Smith (1970),

based on the monthly and seasonal mean values of pressure and winds observed

from three sites over North America. These observations provide a consider-

able improvement over earlier circulation estimates for this region which were

based on observations at only one or two sites.
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Figure 3. 1.4 presents mean seasonal "weather" maps over the North

American continent for the 60 and 80km levels. These maps are polar stereo-

graphic projections with the north pole indicated by the x at the top center of the

figure. Longitudes radiate from that point, and latitudes are concentric circles,

the center of which is the pole. The maps were analyzed by plotting the mean

wind and mean pressure for the appropriate level for each of the three sites

previously mentioned. In addition, the mean wind data from the Meteorological

Rocket Network (MRN) in January and July were plotted in the winter and sum-

mer respectively, to aid in the analyses. As the altitude increases, horizontal

pressure gradients become weaker, necessitating the choice of smaller inter-

vals of pressure to describe the flow at higher levels. These analyses are geo-

strophic, which means that the curvature of the isobars, friction, and all short

term effects have been neglected. Figure 3.1. 4a, which gives the mean winter

circulation at 60km, indicates that the flow is dominated by a vortex centered

over North Central Canada far from the geographic pole. This circulation pro-

duces strong westerly winds over most of the continent, and a predominately

northerly component over Alaska. By extrapolating the analysis over theAtlantic

(broken lines), one may infer strong southerly winds over Greenland. The polar

assymetry of the flow implies the transport of atmospheric properties across lat-

itude circles. The mean summer circulation at 60 km (Figure 3.1.4b) is dom-

inated by an anticyclone whose center cannot be determined from the available

data. This pattern produces easterly winds over most of the continent with the
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strongest zonal components occurring along the southern portion of the United

States. The pressure gradients are smaller in magnitude in summer than in

winter, producing generally lighter winds. Figure 3. 1. 4c shows the mean win-

ter circulation at 80km. This coherent circulation is somewhat unexpected

since the data from individual soundings fluctuate widely. The averaging proc-

ess appears to filter out most of the ageostrophic components which appear to be

quite large in individual soundings. The prevailing west winds, which are gen-

erated by the strong vortex at 60km, remain essentially intact up to 80km. But,

two disturbances stand out in the mean zonal flow: the ridging over eastern

Alaska, which produces a southerly wind over Barrow, and the divergent flow

between Wallops Island and Cape Kennedy. The mean circulation in summer at

80 km, shown in Figure 3. 1. 4d, is vastly different from that at 60 km. The high

pressure region to the north of the continent still exists in summer, but ridging

appears across the center of the continent in a north-south direction producing

a seemingly chaotic circulation. Low pressure regions extend onshore from

both the Atlantic and Pacific Oceans, and the flow is generally light (except for

Barrow). The appearance of this map may result from the breakdown of the

geostrophic assumption at these altitudes. If tides and/or gravity waves dom-

inate the flow, as discussed in the next section, then large accelerations in the

flow occur, and the geostrophic balance no longer applies. Averaging a sample

of this small size may not adequately remove short term influences, since the

variability of the individual soundings about the mean is quite large. Thus, Fig-

ure 3. 1. 4d may not represent a true mean circulation.
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3. 2 Small Scale and Short Term Variations in the Vertical Structure of

the Mesosphere

Since 1967, we have conducted soundings of the atmosphere above

50km primarily utilizing the acoustic grenade and pitot-static tube techniques

to observe short term variations in the temperature, pressure, and density pro-

files to altitudes as high as 120km. Soundings closely spaced in time have dem-

onstrated that the structure of the atmosphere above the stratopause is subject

to rapid and dynamic changes. Temperature variations are used here to dem-

onstrate the variability of the upper atmosphere clearly.

Superimposed upon the gross seasonal differences in temperature

presented in Section 3. 1, there are temperature changes which have been ob-

served to occur over short periods of time, e.g., days or hours. Examination

of these observations reveals that the variations in the tropics are quite differ-

ent from those which occur at middle and high latitudes (Theon, 1968). Several

different mechanisms appear to be responsible for these short term fluctuations

in the upper atmosphere, and several theories have been advanced to explain the

observations. Hines (1960) proposed internal gravity waves to explain the irreg-

ular motions observed in the lower thermosphere and proposes that this gravity

wave mechanism may also be the cause of the wave-like structure in the tem-

perature profiles lower in the atmosphere. Lindzen (1967) proposed thermally

driven diurnal tides to explain the periodic motions observed in the stratosphere,

mesosphere, and lower thermosphere. In both cases, the propagation of energy
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from lower levels upward disturbs the temperature and wind profiles of the

upper atmosphere. Examples of observed, short term disturbances in the tem-

perature profiles and comparisons of these with the appropriate theory follow.

3.2.1 Thermal Tides

Large variations in individually observed tropical temperature

profiles occur, despite the absence of seasonal changes in the mean profiles.

An example of the variability of the tropical upper atmosphere is given in Fig-

ure 3. 2. 1 which shows three temperature profiles observed with the acoustic

grenade technique at Natal, Brazil (6 S) in October, 1966. This series of sound-

ings was initiated at sunrise and the second and third soundings were launched

approximately 12 and 24 hours later, at the following sunset and sunrise, re-

spectively. Temperature changes of up to 50 C (at 91 km) occurred during the

two 12 hour periods, and these far outweighed the small changes which occurred

during the 24 hour period. Thus the diurnal variation was greater by far, than

other variations. In another instance, a 100 C temperature change was observed

in 12 hours at 105 km with a pair of pitot-static tube soundings conducted at the

equator in March, 1965. In Figure 3.2. 1, the temperature changes vary con-

siderably with altitude so that cooling occurred at the 68 and 90 km levels and

heating occurred at the 90km level during the first 12 hour period.

When the profiles in Figure 3. 2.1 are paired and the tempera-

tures at sunrise are subtracted from the temperatures at each sunset, the two

profiles of temperature differences, shown in Figure 3. 2. 2, result. These tem-

perature difference profiles change sign and increase in amplitude with altitude.
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The dashed curve in Figure 3.2.2 gives the temperature changes which were

derived by Lindzen from theoretical consideration of the thermal tides. The

agreement between observation and theory is good above 70km although the

theory underestimated the amplitude of the cooling above 85km. The agreement

is remarkable considering that the theoretical profile is based on assumed ver-

tical distributions of temperature, water vapor, and ozone.

According to theory, these temperature variations are due to

solar heating of water vapor in the troposphere and ozone in the stratosphere

which generate periodic disturbances that propagate upward into the mesosphere

and lower thermosphere. The amplitudes of these disturbances are small in the

region where they are generated, but they increase inversely as the square root

of the density. The phase of the disturbance varies continuously and in an irreg-

ular manner with altitude. The distinguishing characteristic of the short term

termperature variation produced by the thermal tides is their regular, periodic

recurrence. In Lindzen's model, the amplitude of the thermal tide diminishes

rapidly with increasing latitude. Thus the diurnal temperature variations pro-

duced by this mechanism become small at middle and high latitudes and are

masked by other effects.

3.2.2 Gravity Waves

Wave-like features in the temperature structure of the mes-

osphere and lower thermosphere, which are superimposed upon the average

seasonal profiles, have been observed at both middle and high latitudes in winter
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and at middle latitudes in summer. Figure 3.2.3 gives typical temperature pro-

files obtained with the acoustic grenade technique at a mid-latitude site, namely

Wallops Island, Virginia (38N). These profiles were observed over a period of

several years and grouped according to season. The three upper plots are for

consecutive winters, and the two lower plots are for consecutive summers. For

two of the three winters, temperature fluctuations were much greater than in

summer, while during the winter of 1965, a stratospheric warming was observed,

but fluctuations in the mesosphere were relatively small. Typical temperature

profiles obtained with acoustic grenades for the winters and summers of several

years at Churchill, Canada (59N) are shown in Figure 3.2.4. The average am-

plitude for the winter temperature fluctuations is about 30 C, but in summer,

there is no consistent wave-like structure in the mesosphere. If the profiles in

Figure 3. 2.4 are compared with the seasonal averages given in Section 3. 1, the

summer profiles are seen to be well described by a single average temperature

profile, but the winter mesosphere changes so dynamically from day to day that

the average winter profile is not representative of any given time. At even higher

latitudes, namely, at Point Barrow, Alaska (71 N) this contrast is still more

pronounced. The summertime mesosphere temperature profile is extremely

uniform, as can be seen in Figure 3. 2. 5a. The seven acoustic grenade sound-

ings were made over periods spanning two summers; yet, the temperature spread

is no greater than 10-15 C at any given altitude below the mesopause, and there

is no trace of the wave-like structure. Contrast these results with the 6 tem-

perature soundings given in Figure 3.2. 5b. These were observed with the
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acoustic grenade technique during a 15 hour period at Barrow on 31 January -

1 February, 1967. Temperature changes of up to 80 C were observed to occur in

less than 3 hours. The wavelengths of the structure averaged about 10-15km,

and the amplitudes increased with altitude (Smith et al., 1968b). The following

analysis was performed on the soundings shown in Figure 3.2. 5b: Average tem-

peratures were computed at each height level from the six soundings and were

subtracted from the temperatures of each of the individual soundings. These

differences were then plotted in Figure 3. 2.5c as a function of altitude in a time

cross section for the 15 hour period. Isolines for zero temperature changewere

drawn to separate the zones of positive difference (heating) from the negative dif-

ference (cooling). The phase of the waves was assumed to propagate downward.

An average wave period of approximately 200 minutes is obtained from Figure

3.2. 5c, with minimum periods of 85 minutes and maximum periods of 330 min-

utes occurring at the higher and lower altitudes, respectively.

Temperature variations observed at middle and high latitudes

thus have much shorter periods than the diurnal waves observed in the tropics.

As at low latitudes, there is a definite periodicity, and amplitudes increase with

height. There is some selective mechanism which allows these disturbances to

propagate upward in winter, but not in summer at high latitudes. Perhaps this

dependence on season is a result of the generating mechanism at low levels, or

of the vertical wind shears suggested by Hines and Reddy (1967). The regular

vertical wavelength of 10-15km, and the relatively short period suggest that a

35



mechanism such as the internal gravity waves proposed by Hines are responsi-

ble for the variations, which amount to as much as 80 C in 3 hours near the mes-

opause. At higher altitudes (120km), temperature changes of over 150 C were

observed at Churchill, but these large temperature variations may have been

caused by intense auroral activity which was observed at the same time.

3. 3 Temperature Structure in Noctilucent Clouds

Noctilucent clouds have been a subject of interest for many years be-

cause of the great heights above the earth at which they occur. These clouds

have generally been observed at altitudes ranging from 78 to 90km, the majority

of observations indicating a cloud height of about 83 km (Fogle, 1966). They

have been sighted only at high latitudes and most frequently during the 4- to 6-

week period following the summer solstice. Noctilucent clouds are visible only

during the time that the sun is below the observer's horizon, and they are di-

rectly illuminated by sunlight against a darkened sky background. High latitudes

provide favorable geometry for observation of the clouds for considerably longer

periods each day than middle or low latitudes do, but the fact that clouds exist

only at high latitudes and only during summer can be explained in terms of the

temperature structure of the mesosphere at these latitudes.

The acoustic grenade technique was employed to provide measured

profiles of atmospheric temperature, pressure, density, and wind to an altitude

of 95 km during displays of noctilucent clouds. A total of ten grenade soundings

were carried out from Kronogard, Sweden (66N) (Witt et al., 1965), and Barrow,
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Alaska (71N), during the summers of 1963 through 1965 to determine the rela-

tion between the mesospheric temperature structure and the occurrence of noc-

tilucent clouds. Results of soundings at Barrow (August, 1965) and Krongard

(1963) are given in Figure 3. 3.1. As discussed in section 3.2, these profiles

display remarkable uniformity. The mesopause temperatures ranged from 130

to 148 K, and the steep uniform lapse rate, which is typical of the high latitude

summer mesosphere, was observed in all the soundings. An error analysis has

been performed on these data, and the errors associated with the temperatures

mentioned above are 1 to 3 C. Very little change in the temperature structure

can be seen between soundings made in the presence and absence of noctilucent

clouds. The first sounding at each site was conducted during a display of noc-

tilucent clouds, and the second served as a control sounding, having been carried

out in confirmed absence of the clouds. At Barrow, the minimum temperature

of the profile made in the presence of clouds was 139 K, which is 3 C warmer

than the mesopause temperature of the control sounding. At Kronogard, how-

ever, the minimum temperature of the profile made during the cloud display was

130 K, or 18 C colder than the mesopause temperature of the control.

The profile of the average temperature for five soundings conducted

during displays of noctilucent clouds (Figure 3. 3. 3) and the average profile for

three soundings conducted during the confirmed absence of these clouds do not

differ by more than 5 C at any point between 45 and 90 km. The warm strato-

pause, the steep uniform lapse rate, and the extremely cold mesopause are
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essentially identical for both average profiles. For five soundings conducted

during displays of noctilucent clouds, mesopause temperatures varied from 130

to 147 K. Correspondingly, for soundings conducted in the absence of clouds,

the mesopause temperatures ranged from 129 to 149 K. Thus the coldest tem-

peratures did not necessarily produce noctilucent clouds, but the clouds were

always accompanied by mesopause temperatures less than 150 K.

There are two schools of thought concerning the composition of noc-

tilucent cloud particles. One theory assumes the presence of sufficient water

vapor at the mesopause to form ice particles by a process of saturation and con-

densation (Humphreys, 1933). The other does not accept the presence of water

vapor and ice, but explains the noctilucent clouds in terms of the light-scattering

properties of the dust alone (Ludlum, 1957), which is believed to originate from

the vaporization of incoming meteors or from the surface of the Earth. Sampling

experiments have been conducted to resolve the question of the composition of

cloud particles, and traces of a volatile substance believed to be ice were found

surrounding many of the larger particles obtained from a noctilucent cloud

(Hemenway, et al. , 1964).

In view of the temperature data reported above, it appears that the

occurrence of noctilucent clouds depends largely on the amount of water vapor

present at the mesopause. Khvostikov (1966) has postulated that "Noctilucent

clouds appear in the atmosphere at the place and the time where and when the

temperature of the air turns out to be low enough. " However, the results shown
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in Figure 3. 3. 1 indicate that a given low temperature alone is not sufficient to

produce noctilucent clouds, unless the low temperature occurs in conjunction

with sufficient water vapor. Thus the water vapor content of the high atmosphere

must be considered.

Seasonal variations of the mesopause temperature not only produce

sufficiently cold conditions for the formation of noctilucent clouds, but also pro-

vide a circulation consistent with the transport of water vapor to the mesopause

at high latitudes in summer. According to section 3. 1 the high-latitude summer-

time mesopause is about 80 C colder than the wintertime mesopause. These

seasonal variations of temperature are not consistent with considerations of

radiation alone, since at high latitudes, the summer mesosphere is heated al-

most 24 hours a day, and the winter mesophere is dark almost 24 hours a day.

Leovy (1964) demonstrated that a meridional circulation superimposed on an

atmosphere in radiative equilibrium produced good qualitative agreement with

observed seasonal variations of temperature. This meridional circulation caused

ascending motion at the summer pole and descending motion at the winter pole,

thereby transferring heat from the radiatively heated upper atmosphere of sum-

mer to the heat-deficient upper atmosphere of winter.

Hesstvedt (1964) used a meridional circulation similar to that proposed

earlier by Murgatroyd and Singleton to explain the presence of water vapor in

the upper atmosphere. This model is also consistent with the observed varia-

tions of temperature. As can be seen in Figure 3. 3.2, Hesstvedt's model shows
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that the source of water vapor is the tropical troposphere, and that water vapor

enters the stratosphere through the gap in the tropopause. From this relatively

narrow latitudinal band near the equator, air rises to an altitude of 25 km, moves

meridionally toward the summer pole, and then ascends rapidly at high latitudes.

Poleward of 60 degrees latitude in the summer hemisphere, air at 80kmis seen

to originate from the equatorial troposphere. Such a model qualitatively explains

the mechanism both for transporting water vapor to the summer mesopause and

for transferring heat from the summer mesosphere to the winter mesosphere,

thereby accounting for the observed seasonal variations in the temperature struc-

ture. There is no more reason to believe that water vapor is homogeneously

distributed in the high-latitude mesosphere than to believe that such a situation

exists in the troposphere. The meridional circulation shown in Figure 3. 3.2

represents the average motion in the stratosphere and mesosphere, but this

circulation is subject to frequent and dynamic changes, and, therefore, any

assumptions of steady-state flow or homogeneous composition are unrealistic.

Thus the low temperatures at the mesopause may not produce noctilucent clouds

if there is insufficient water vapor available. Questions of the amount of water

vapor available and the magnitude of the vertical velocity necessary to transport

water vapor to the mesopause must remain unanswered for the present, since

no in situ measurements have been made to confirm or to refute the estimates

and extrapolations that have been published. Figure 3. 3. 3 shows that Hesstvedt

(1962) estimated the mixing ratio atthe mesopause to be 1 g kg-', which corresponds
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to a frost point of 172 K at 82 km. Hesstvedt (1964) later revised this value

downward to the order of 10- 2 g kg - 1 , which is consistent with Paton's (1964)

estimate of 6 x 10- 3 g kg -
1 (6 x 10- 3 g k- corresponds to a frost point of 150 K at

80km),. Charlson (1965) used the mesopause temperature measured at Kronogard

(130 K) as a conservative approximation to develop a steady-state model for noc-

tilucent clouds. Thus, estimates of the content of water vapor at the mesopause

have grown smaller with the observations of lower mesopause temperatures.

Figure 3. 3. 3 also shows a comparison of the frost points for various mixing

ratios and a curve which has been extrapolated from measurements at altitudes

reached by balloon-borne instrumentation, with the average temperature profile

for the five soundings made during displays of noctilucent clouds. Curves A,

B, and C were computed for constant mixing ratios with the use of the pressure

profile derived from the average of 15 measured temperature profiles at high

latitudes in summer. Curve A gives the frost points for a mixing ratio of 10- 3 g

kg-1 , curve B for 10- 2 g kg-', and curve C for 10
-
1 g kg-'. Badinov, et al.,

(1966) have extrapolated values for frost points from measurements made by

various techniques at balloon altitudes of 28 to 30km, and these are given by

curve D. The average temperature profile for the five soundings of noctilucent

clouds is given by curve E. The mesopause temperature of 143 K corresponds

to a saturation mixing ratio of approximately 1. 3 x 10- 3 g kg- . It must be re-

membered, however, that this is an average value of the mixing ratio and that

both cooler and warmer temperatures, corresponding to lower and higher satura-

tion mixing ratios, have been measured during the cloud displays.
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Since no significant difference in the observed temperature was noted

between the soundings conducted in the presence of noctilucent clouds and those

conducted in the absence of the clouds, it appears reasonable to conclude that a

mesopause temperature of less than 150 K is a necessary, but not sufficient, con-

dition for the existence of noctilucent clouds. Variability of the water vapor

content at the mesopause is also believed to be a key factor in the occurrence of

these clouds. In view of the circulation that is implied by the seasonal differ-

ences in temperature in the mesosphere, small amounts of water vapor may be

transported by this circulation into the mesosphere during the summer at high

latitudes. It is at these latitudes that saturation or super-saturation occurs in

the narrow layer at the mesopause where these extremely cold temperatures

occur. Dust particles, probably originating from incoming meteors, serve as

sublimation nuclei in this saturated region, and growto sufficient size to scatter

sunlight, thus producing noctilucent clouds.

3.4 Global Stratospheric Temperature Fields Observed with Satellites

The first global patterns of stratospheric temperatures observed with

satellites were presented by Kennedy and Nordberg (1967). They dealt with the

results from TIROS 7 which produced measurements of temperatures "weighted"

over a broad slab of most of the lower stratosphere. Nevertheless, these pat-

terns provided a synoptic insight into the seasonal variations of that region which

was not possible with previous conventional observations. A total of about 70

"quasi-global" maps, from 65N to 65S were analyzed by Kennedy (1966). Two
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of these maps are shown here in Figures 3.4. 1 and 3.4.2. The temperature

patterns are indicative of the summer polar anticyclones and the winter polar

vortices. During June, 1963, the warm core was centered over the north polar

cap, and the cold core over the south polar cap. A significant deviation in the

symmetry of the rather closely spaced isotherms around the south pole occurs

over the central South Pacific. A ridge of warm air (high pressure) extends to

high latitudes southeast of Australia and over New Zealand while cold air (low

pressure) penetrates to low latitudes over the eastern Pacific Ocean, suggesting

anticyclonic circulation over Australia. Differences of about 6 C in equivalent

black-body temperatures along latitude circles are observed between the west-

ern and eastern South Pacific. This asymmetry was observed during both the

1963 and 1964 Southern Hemisphere winters, and was observed again with greater

detail in the south polar region during 1966 with the Nimbus 2 satellite (see Fig-

ure 3.4. 5 below). During September, 1963 the warm air ridge spread consider-

ably westward so that the equivalent black-body temperature difference between

the Pacific and the Indian Oceans along 60 S was almost 20 C.

Northern Hemisphere isotherms display a pattern which is well cor-

related with the circulation features already known from radiosonde observations

in this region (Figure 3.4. 2). This correlation lends confidence to the applica-

tion of satellite observations to infer circulation in areas where no conventional

observations exist.

Temperatures in the tropics are considerably lower during December-

January than they are during June-July (Figure 3.4.3). There is an almost perfect
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phase relationship between the high latitude Northern Hemisphere and tropical

temperature curves (a and b) and a 180 degree phase lag between the tropical

and high latitude Southern Hemisphere temperature cycle (curves b and c). Note

the almost identical zonal average temperatures at high northern and southern

latitudes and in the tropics during the equinoxes. The difference in the ampli-

tudes of the high latitude curves in the two hemispheres in winter indicates that

the magnitude of the temperatures in the stratosphere are strongly influenced by

probably both radiative exchange with the surface and lower atmosphere, and

eddy transfer of energy within the stratosphere. The warm anti-cyclone over

the North Pacific is obviously responsible for the fact that zonal average tem-

peratures between 40-65 N are 4-6 C higher in December-January than corre-

sponding temperatures between 40-65S during June-July. The almost equal

amplitudes of the two high latitude curves in Figure 3.4. 3 during summer in-

dicate that such effects are of lesser consequence in summer.

The TIROS 7 data also permitted, for the first time, the analysis of

the development of the final stratospheric warming in the Northern and Southern

Hemispheres during March, 1964 and September, 1963, respectively. The es-

sence of this analysis is illustrated in Figures 3. 4. 4a and b.

Similar measurements were made with NIMBUS 2 (Warnecke and

McCulloch, 1967). In this case, because of the higher inclination of the satellite

orbit, these measurements included both polar regions. The position of the

southern polar vortex with coldest temperatures located over the South Pole is
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shown, Figure 3.4.5, as derived from NIMBUS 2 observations on June 10, 1966.

The temperature pattern is extremely asymmetric. Warmer mid-latitudes and

stronger temperature gradients than elsewhere exist toward the Australian and

western Pacific side of the hemisphere. This assymetry which has been ob-

served consistently in the Antarctic winter with the instruments on TIROS 7 and

NIMBUS 2, 3, and 4, seems to indicate that dynamic processes strongly counter-

act the radiative heat loss which is responsible for the cold air cyclone in the

Southern Hemisphere winter stratosphere.

Global stratospheric temperature analyses were made by Prabhakara,

et al., (1971) based on the "inversion" of 14 to 15pjm radiances measured with

the IRIS. In that analysis, global temperature maps for both the 10 mb and 50 mb

levels were drawn for the period 25 to 29 April 1969. Figure 3.4. 6 shows one

set of these maps for the 50 and 10mb levels. The 50 mb (approx. 21km) map

reflects the lower stratospheric regime: the middle and high latitudes of the

Northern Hemisphere display a series of waves of wavenumber 4 and 5 in the

zonal temperature pattern around the globe; the tropical regions between 20N

and 20 S are characterized by a belt of very cold air separating warmer air on

both sides. The temperatures, in general, increase from equator (approx.

208 K) to the North Pole (approx. 228 K) while toward the Southern Hemisphere

warm air (228 K over the Indian Ocean and 218 K over the eastern Pacific) is

sandwiched between the cold tropics and the cold vortex over the Antarctic.

This is in accord with the earlier TIROS and NIMBUS 2 observations. The 10 mb
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(approx. 32 km) level maps show a steady increase of temperature from south

pole (208 K) to north pole (235 K) indicating that the cooling of the Southern Hem-

isphere has progressed considerably further at this level than at 50 mb. The

characteristic asymmetry in the south polar vortex mentioned earlier is still

evident at the 10 mb level.

The most complete analysis to date of stratospheric temperatures ob-

served by satellites was made by Fritz and Soules (1970). Radiances measured

by the SIRS instrument on NIMBUS 3 in a narrow 5 cmr 1 wide spectral interval

near 15,um were analyzed globally for the period April, 1969 to April, 1970. No

attempt was made to convert the radiances to atmospheric temperatures, but,

the radiance patterns in themselves are extremely revealing of the temperature

structure of the "middle stratosphere. " All radiation in this spectral channel is

received from the stratosphere and more than half of it is received from heights

greater than 30 mb. The annual variations at different latitudes analyzed by

Fritz and Soules (Figure 3. 4. 7) are in essential agreement with those derived

from TIROS 7 (Figure 3. 4. 3), but they were obtained with a much higher resolu-

tion of both time and latitude zones. Once again, the remarkable uniformity of

stratospheric temperatures over the entire globe during the equinoxes can be

seen. The warming in the Northern winter from January to March is also ex-

tremely pronounced. The minimum temperature in the tropics occurs again in

December/January, but maxima at the equator are observed at the equinoxes

which is in contrast to the TIROS 7 results which showed the maximum tempera-

tures in the tropics in June/July. Apparently, the TIROS 7 observations were
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averaged over too wide a latitude band (30 N to 30 N) to show the behavior of the

Equatorial Zone. A most significant result of Fritz and Soules is that all strat-

ospheric warmings in the winter hemisphere are accompanied by simultaneous

coolings in the stratosphere of the tropics and the summer hemisphere. Figure

3. 4. 8 shows this out-of-phase relationship in the radiances averaged around lat-

itude circles. However, these changes did not occur at all longitudes. When

the warming reached their maxima, the higher radiances occurred only in one

part of a latitude zone, while widespread cooling took place in the tropics and in

the summer hemisphere. Fritz and Soules believe that these out-of-phase changes

of stratospheric temperature may be explained by heat transfer changes which

result from variations in the meridional circulation and large-scale eddies.

Radiances measured by the SCR instrument on NIMBUS 4 have been

inverted to temperature profiles up to 60km and analyzed in terms of daily var-

iations of the global temperature structure since April, 1970 by E. J. Williamson

and J. T. Houghton of Oxford University, England. Figures 3.4. 9 and 3. 4. 10

are examples of these analyses, and are shown here through the courtesy of

Williamson and Houghton. Figure 3.4. 9 displays meridional temperature cross-

sections for four days (near the solstices and equinoxes) from the surface to

heights of about 60 km. The upper portions of Figure 3. 4. 9 are comparable to

the lower portion of Figure 3. 1.2. The SCR measurements for 21 January 1971

correspond indeed with the mean cross-section shown in Figure 3. 2. 1. How-

ever, the 16 July SCR data show a much warmer and higher stratopause for the
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winter (South) polar region than would be expected from Figure 3. 2. 1. It should

be noted that it took some 200 rocket soundings over a period of nearly a decade,

and the assumption of complete seasonal symmetry between Northern and South-

ern Hemispheres to interpret Figure 3. 2. 1 on a truly global scale, while one

global cross-section of Figure 3. 4. 9 was observed in one single day. The as-

symetry in the seasonal temperature extremes between the North and South polar

caps is quite interesting. During summer, both regions show the well known

weak temperature lapse rate in the troposphere, a shallow tropopause and a very

steep temperature increase throughout the stratosphere. In winter, however,

the north polar region shows the expected, nearly isothermal troposphere and

stratosphere with a very shallow tropopause and stratopause, while the south

polar region displays a remarkably cold tropopause (180 K) at the extremely

high altitude equivalent to 30 mb; indications of an unusually warm (270 K) and

high (0. 5 mb) stratopause at the south pole are also found in Figure 3. 4. 9 for 16

July 1970. The dynamic structure of the stratosphere is illustrated by Figure

3. 4. 10 where vertical cross-sections across longitudes of the temperature de-

viations from a mean for the latitude belt of 55-66 S are shown for three days

during September, 1970. On each of the three days, the westward slope of the

temperature deviations with height is clearly evident. For example, on 4 Sep-

tember, at a height of about 1 mb, the characteristic warm sector of the Southern

Hemisphere (+20 C deviation) is located near 30 E, while at 200 mb a deviation

of equal amplitude is found near 90E. Five days later, on 9 September, this
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warm sector has intensified to +25 C deviation and moved further eastward in

the lower stratosphere, while at the 1 mb level it has split into two centers one

at 50E, the other at 120W. In general, it is observed that cold and warm re-

gions in the lower stratosphere are overlain by warm and cold regions, respec-

tively in the upper stratosphere.

3.5 Global Ozone Fields from Satellite Observations

The principal impetus for observing atmospheric ozone on a global

scale arises from the fact that the ozone concentration at altitudes below 30 km

serves as a tracer of the general circulation of the atmosphere, while at higher

altitudes, ozone relates to the heat budget and the photochemistry of the atmosphere.

Ozone is produced in the middle stratosphere (30-40km) at low and

mid-latitudes by photochemical processes and transported to other heights and

latitudes by the vertical and meridional motions of the atmosphere. About two-

thirds of the ozone is found in the lower stratosphere (below 30 km) where it is

protected from photochemical modification by the absorption of dissociating ra-

diation at higher altitudes. The lower stratosphere ozone is moved by winds and

eddy motions until it is either destroyed by oxidation reactions or lost in the

troposphere. Dobson Spectrophotometer measurements of the total columnar

ozone content have given systematic data on the fluctuations of the lower strat-

osphere ozone. It has become apparent that the total ozone field is more com-

plex than can be determined from the existing network of about 80 stations, lo-

cated primarily in the northern hemisphere. The general latitudinal gradient
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of total ozone is modulated by longitudinal patterns which seem to be related to

tropospheric pressure patterns.

Balloon ozone soundings have been useful in demonstrating the rela-

tionships between total ozone amounts and the vertical ozone distribution. They

have also served in characterizing the quasi-horizontal transport processes near

the base of the stratosphere. The density of balloon ozone sounding stations,

however, is inadequate for a study of the general circulation mechanisms.

The ozone source region in the middle stratosphere is above balloon

altitudes. The amount of ozone in that region is a small fraction of the total

ozone amount which is dominated by the lower altitude ozone. The only reliable

source of data for this region has been from sounding rockets. The number of

flights of instruments with well defined absolute accuracy has been sufficient

only to provide a general understanding of the photochemical processes and of

static-equilibrium ozone distributions, and to hint that transport processes might

actively modify the distributions. The systematic, global observations of both

total amount of ozone and its vertical distribution, especially above 30 km, from

NIMBUS afford an excellent opportunity to analyze the circulation of the lower

stratosphere, and to study the combination of photochemistry and transport proc-

esses in the middle stratosphere.

3. 5. 1 Total Ozone

Figure 3. 5. 1. 1 shows a latitudinal profile of total ozone ob-

served during one single orbit of NIMBUS 4 on April 15, 1970. Simultaneous
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observation by the BUV and IRIS instruments are compared to results from

earlier observations from shipboard by the Dobson spectrophotometer (White

and Krueger, 1968). It is interesting to compare the time scale of the observa-

tions. It took 54 days to acquire the shipboard data, while the satellite datawere

taken in 54 minutes !

The shipboard Dobsonr data are consistent with climatological

mean values where available from fixed stations. The differences between the

recent satellite and earlier shipboard observations are representative of the

short-term variability at mid-latitudes. The IRIS and BUV results agree rea-

sonably well between 70 N and 45 S but total ozone measured with the BUV is

about 7 percent lower than that measured with IRIS. According to Mateer, et

al., (1971), the BUV measurements systematically underestimate total ozone by

about 0. 020 atm. -cm from simultaneous comparisons with Dobson observations.

The same major features of the variation of total ozone amount with latitude ap-

pear in both sets of data, but the fine scale structure differs between the two ob-

serving techniques. This is probably due to the differences in the field-of-view

of the two instruments (5 x 5 degrees for IRIS and 11 x 17 degrees for the BUV).

Between 45 S and 74 S the measurements diverge considerably, although similar

structural features appear in both profiles. The BUV values seem in better

agreement with the shipboard observations and with climatological data for Ant-

arctica. The reason for this discrepancy appears to be that the near isothermal

temperature structure of the stratosphere over Antarctica introduces errors in
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the retrieval of ozone amounts from the IRIS observations. The IRIS measure-

ments depend on the thermal emission from the atmosphere, and therefore on a

strong temperature gradient with height. Thirteen profiles such as that given in

Figure 3. 5. 1. 1 may be obtained from NIMBUS 4 daily with each of the two in-

struments. Daily global maps of total ozone were constructed from the BUV

observations which are shown in Figures 3. 5. 1. 2a and b. Longitudinal varia-

tions in the total amount of ozone are strongly related to upper tropospheric and

lower stratospheric pressure patterns. For example, high amounts of ozone

near Greenland and over Siberia appear to be related to persistent low pressure

systems in these regions. In the southern hemisphere autumn, the latitudinal

gradients of the ozone amount are less steep than gradients in the northern hem-

isphere during spring.

Mean monthly global maps of total ozone were prepared from

the IRIS observations with NIMBUS 3 for April, May, June, and July, 1969.

They are shown in Figures 3. 5. 1. 3a-d. The minimum in the total ozone over

the equatorial region is produced by the transport of ozone away from the equa-

tor to higher latitudes by the Hadley circulation in the stratosphere. However,

in July, the total ozone values in this equatorial minimum increase to about 270

Dobson units, suggesting the probable weakening of the Hadley cell at that time.

3. 5. 2 High Altitude Ozone Distributions

A parameter which is particularly useful for analysis of the

middle and upper stratosphere is the ozone-to-air mixing ratio. Within a given
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parcel of air, the mixing ratio is unmodified by vertical or horizontal displace-

ments; only photochemical or chemical reactions can change its value. Latitu-

dinal cross-sections of mixing ratios in the stratosphere from 10 mb to 0. 2 mb

have been prepared from the BUV observations over the latitude range 70 S to

80N. One such cross-section for an equatorial crossing of 56 E on July 5, 1970,

is shown in Figure 3. 5. 2. 1. The contours are values of constant 03 to air mass

mixing ratio in #ugm gm-1 . At pressure levels greater than 4 mb (lower than

37 km), mixing ratios are practically symmetrical with latitude about the Equator

in April and 10 N in early July. Relatively high mixing ratios of ozone are cen-

tered in the tropics but decrease abruptly toward the poles at about 20 degrees

latitude from the center. A cellular structure can be observed within the tropi-

cal region. Mixing ratios in the polar winter region (South Pole) are 15-20 per-

cent lower than what those measured in the polar summer (North Pole). At

pressures lower than 4mb (heights greater than 37 km), distributions are not

symmetric about the Equator. Mixing ratios at those altitudes increase mono-

tonically from north to south. The winter hemisphere between 40-60 S exhibits

a striking maximum at the 1 to 3 mb levels.

The global nature of these characteristics is shown in Figures

3. 5. 2. 2 a-d. In Figures a and b, the total ozone above 10 mb has been plotted

for both hemispheres. They show symmetry about the Equatorwith zonal grad-

ients circling about the minima at both poles. The total amounts are approxi-

mately equal in the two hemispheres with highest values at low latitudes and
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minima at both poles. Longitudinal variation features appear to bear little re-

lationship to the lower stratosphere ozone. Figures c and d show the total ozone

above the 2. 8 mb level. The two hemispheres are remarkably dissimilar in this

case. The northern hemisphere has weak gradients and irregular contours. The

southern hemisphere has strong gradients with contours centered at the pole.

Total ozone amounts in the southern hemisphere are about double those in the

northern hemisphere. The highest values are found, not at the pole, but near

50S.

Calculations of the ozone distribution assuming a static at-

mosphere model have shown the mixing ratio maximum near the equator (Diitsch

1969), and correspond approximately to our observations in the northern hem-

isphere (summer). The southern hemisphere (winter) maximum, however, has

not been reproduced by these calculations.

3.6 Nocturnal Structure of 03 in the Mesosphere

Ozone measurements up to 67 km with the chemiluminescent rocket

sounding technique described in 2. 1. 6 were first obtained at Wallops Island, Va.,

in 1968, and were compared with simultaneous optical rocket and chemical bal-

loon soundings. Good agreement among all techniques was demonstrated in the

regions where the measurements overlap, as shown by Figure 3. 6. 1.

In March, 1970, and March, 1971, pairs of chemiluminescent ozone

soundings were made at Wallops Island, Virginia (38 N), and at the Guiana Space

Center (5 N) to determine the diurnal variation of ozone concentrations at various
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latitudes in the mesosphere. The results of these experiments are shown in

Figure 3. 6. 2. At both locations, the day/night variations in 03 concentration

are smaller than those calculated on the basis of even a "wet" model of the at-

mosphere where the hydrogen compounds play a major role in the photochemistry

of the mesosphere. Water vapor or other constituents responsible for the de-

composition of ozone may be present at these heights in greater amounts than

previously expected. In the pure oxygen or "dry" model only the following re-

actions are considered:

02 + hv- O + 0

O + O + M - 02 + M

0 + 02 + M - 03 + M

O + 03 -+ 202

03 + hv i 02 + 02

In the "wet" model, described in detail by Hunt (1966) the decomposition of

H2 0 by oxygen atoms starts a chain of reactions which, by their reaction rates,

are more effective in controlling O and 03 in the mesosphere than if only oxygen

were considered. The following equations demonstrate these additional sinks

for O and 03 due to the presence of water vapor.

O + H2 0 - OH + OH

H2 0 + hv - H + OH

H + 03 - OH + 02

O + OH -02 + H
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OH + 0 3 - HO2 + 02

HO2 + 03 - OH + 202

H + OH + M - H2 0

Significantly, the rate coefficients of these reactions have no known tem-

perature dependence, whereas those in the pure oxygen atmosphere are tem-

perature dependent.

In January, 1969, two chemiluminescent ozone soundings were made

from Pt. Barrow, Alaska (71 N). The objective of this experiment was not only

to measure the ozone distribution in the polar winter night, but also to measure

this distribution before and after a stratospheric disturbance (Hilsenrath, 1971).

Figure 3. 6. 3 shows the results of the two ozone soundings performed on January

11 and 30. The solar zenith angle was 125 degrees for both flights, while the

minimum zenith angle during the days of the launch was 93 degrees and 80 de-

grees for the 11th and 30th of January, respectively. In the mesosphere, the

ozone profiles show an essentially monotonic decrease of ozone concentration

with height, in contrast to the distribution observed at lower altitudes. It was

thought that in the absence of ultraviolet radiation responsible for the production

of O and loss of 03, some structure would appear in the profiles even at higher

altitudes, especially in light of the highly disturbed temperature and wind fields

that occur at high latitudes during the winter. Since this structure did not ap-

pear, one might conclude that the chemical restoration time constants are short

enough, or mixing is rapid enough to yield the measured smooth profiles. Another
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significant feature of this experiment is the variation of ozone near 60 km. Tem-

perature soundings at this altitude conducted within 3 hours of the ozone sound-

ings indicated a temperature decrease of approximately 50 C near 60km, for the

same period during which the ozone concentration increased by almost a factor

of four. This result is consistent with the pure oxygen model of the atmosphere

in photochemical equilibrium, where ozone destruction is favored by the warmer

temperature. The colder temperature enhances the formation of ozone by re-

combination of available oxygen atoms with molecular oxygen. This conclusion

is based on the assumption of a constant source of atomic oxygen at these alti-

tudes. The latitudinal differences in the diurnal variation of the ozone distribu-

tions as well as the results from the polar night measurements imply a fairly

strong horizontal and seasonal variation of atomic oxygen and water vapor in

the mesosphere.

3. 7 Results - Atomic Oxygen Sounding

The first flight of the atomic oxygen experiment discussed here was

performed at Wallops Island, Va. on a Nike Cajun sounding rocket in October,

1970. Figure 3. 7. 1 shows the results of this flight compared to theoretical mod-

els. Though this first flight yielded data from only 88-95 km, future flights will

extend measurements to a height range of 75 to 120 km. Measurements of oxygen

atoms in this altitude region are important to determine the state of the meso-

sphere and lower thermosphere because of the wide range of characteristic time

constants (or residence times) for oxygen atoms, i. e., from less than one day
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at the lower altitudes to months at altitudes above 110km. These measurements

would then yield information on the photochemical processes as well as the dy-

namics of this part of the atmosphere. Since only one set of data has been ob-

tained, it would be premature to make any definitive conclusions on the results

of this experiment, except that the results are consistent with models that include

molecular and eddy diffusion and turbulent mixing, but not with those that assume

steady state conditions. Therefore inferences concerning the large scale dy-

namics in this altitude range, such as the nature of meridional flow from the

summer pole to winter pole near the mesopause, will be difficult. Oxygen atom

data will also be applicable to the description of phenomena in the ionosphere

such as D and E region anomalies, since they both most likely involve neutrali-

zation of atomic oxygen atoms.

3.8 Long Term Variations of Solar UV Energy Inputs to the Mesosphere

Variations of solar UV radiation have been derived from the three UV

sensors which were common to a rocket flight in 1966, and the NIMBUS 3 and 4

MUSE experiments during 1969, and 1970, respectively. The MUSE sensor re-

sponse distributions functions are shown in Figure 3. 8. 1. The response distri-

bution function at any wavelength represents the fraction of the sensor output

which comes from shorter wavelengths.

There are three types of solar UV variations which have been ob-

served: those related to the long term or solar cycle variation; those related

to the solar rotation period; and those associated with flare activity. They are

listed in order of decreasing magnitude.
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3. 8. 1 Solar Cycle Variations

Significant variations of solar irradiance were observed in ac-

cordance with the 11year solar cycle (minimum 1964, maximum late 1968). The

best demonstration of this variation is found in the 1750 A radiation which orig-

inates near the region of solar temperature minimum. In August, 1966, the

solar irradiance observed by the sensor at 1750A was only 41 percent of that

observed in April, 1969; by April, 1970, the irradiance had decreased to 76

percent of the 1969 value. Such variation should produce significant changes in

the production rate of atomic oxygen in the lower thermosphere-upper meso-

sphere region. A discussion of the importance of dissociation in the tail of the

Schumann-Runge continuum and predissociation of the vibrational levels at wave-

lengths shorter than 1972 A has been given in detail by Hudson, et al. (1969).

An increase in the production rate of atomic oxygen in the

mesosphere-lower thermosphere region without a corresponding change in the

photodissociation rate of 03 leads to an increase in the amount of ozone. There

is some experimental evidence that this may be taking place. Gattinger and

Jones (1966) observed a fourfold decrease in the twilight brightness of the 0, 1

band of the 03, Ag - 3 g system between 1960 and 1964. One of the theories

for the production of 02 (lAg) is via the photodissociation of 03 in the Hartley

continuum. Additional experimental evidence has been given by Paetzold (1961b)

who reported a small enhancement in the amount of ozone above 35km which

was greater in 1958 than in 1952, and which showed a small positive correlation

with sunspot numbers and the decimeter solar radio flux.
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3. 8. 2 27-Day Variability

The most unambiguously observed type of UV variability is

that associated with the 27-day solar rotational period. These variations are

easily observed since the amount of sensor degradation which occurs in the 27-

day period is practically negligible.

If the slowly varying exponential decay factors are removed

from the MUSE photometer measurements, and corrections are made for the

variable earth sun distance, one obtains the curves of Figure 3. 8. 2 showing the

27-day solar UV variability. The curves labeled A, B, and C refer to sensors

whose response functions are shown in Figure 3. 8. 1. Each data point repre-

sents a daily average of one to eight observations per day at the terminator. In

this figure, the long term trends of the curves over a period of a year are due

to the way in which the exponential decay factors were removed. However, the

following significant factors inherent in the solar UV flux are clearly evident in

Figure 3. 8.2:

1. Two UV flux maxima per solar rotation are observed.

2. The magnitude of UV flux variation decreases with increasing

wavelengths.

3. The UV flux variation per rotation is decreasing with time.

4. The UV flux variations correlate with other indicators of solar activity.

Three indicators of solar activity are shown below the MUSE

measurements. The 8-20 A x-ray flux background (flare enhancements removed)
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is from the experiment on Explorer 37 of R. Kreplin of the U. S. Naval Research

Laboratory. The values for the daily 1Kp and the 10. 7 cm solar flux are taken

from "Solar-Geophysical Data" of the Environmental Data Service NOAA. Active

solar regions producing enhancements in the 8-20A X-ray flux and the 10. 7 cm

radio flux are definitely related to the UV enhancements. In addition, it appears

that some relationship does exist between the solar wind related perturbations

of the geomagnetic field through Kp. Increases to values greater than 40 fre-

quently follow 0-3 days after a UV maximum, which sometimes does not corre-

late well with the other solar activity indicators.

The UV maxima and minima correlate better with the 10. 7 cm

radiation than with the calcium plage area or the Zurich provisional mean sun-

spot numbers. Similarly, Timothy and Timothy (1970) have observed that the

correlation between the EUV helium II Lyman-a line at 304 A with the standard

indicators of solar activity is poor. For the MUSE experiment, the correlation

is much worse for the longer wavelength sensors (B) and (C).

The percentage variation of solar irradiance versus wave

number (cm-1) is shown in Figure 3. 8. 3 for the spectral region spanned by sen-

sors A and C. No scientific justification is proposed for the logarithmic relation

between percentage variation and wave number.

It can be seen in Figure 3. 8.2 that two UV maxima per solar

rotation are frequently observed from sensors A and B. A graph of the Carrington

longitude of the central meridian on the days of the UV flux maxima is presented
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in Figure 3. 8.4 which covers a period of 28 solar rotations. The UV maxima

can be determined with an accuracy of about ±1 day or ±13 degrees in longitude.

Two distinct phenomena are observed. The UV maxima appear to originate from

two UV active regions, as seen by the clustering of the points about two straight

lines. The regions have persisted through 28 solar rotations, and they have

been observed by the MUSE experiments on NIMBUS 3 and 4. The longitude of

the strongest or primary feature is indicated by (x) whereas the secondary re-

gion is described by (o). At the time of launch of NIMBUS 3, the two regions

were separated in longitude by 225 degrees, and 28 rotations later, the separa-

tion had decreased to 190 degrees. If one uses 13. 199 degrees -1 day as the

rotation rate of the Carrington longitude, then the rotation rate of the primary

UV active region is 13. 14 degrees day-l , while that of the secondary one is

13. 11 degrees day-' .

The time dependence of the variations of the UV irradiances

(sensor A) per solar rotation are given in Figure 3. 8. 5 for the two regions shown

in Figure 3. 8. 4. The primary region peaked during solar rotation 1548 while

the secondary one appears to have reached a maximum around rotation number

1557.

Evidence for the existence of persistent zones of activity on

opposite sides of the sun has been presented by Dodson (1970) and Bumba (1970).

In general, the active regions appear to be better defined in the UV. Also, there

is an approximate agreement as to strength and longitude of the active regions as

determined from ground based and satellite UV measurements.
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3. 8. 3 Flare UV Variability

On April 21, 1969, at 1959 UT, a major optical flare of optical

importance 3B, small class X was recorded. The response of the solar UV flux

measured with the MUSE experiment to this flare is shown in Figure 3. 8. 6. The

ordinate is the sensor current normalized to the value at the terminator on or-

bit 101. The function f (0)/coso represents the sensor response function to

changing angles of illumination of the photocathode. The flare occurred during

orbit 102, 15 frames or 12 minutes prior to the sun appearing in the field-of-

view. Only the shortest wavelength channel showed any flare enhancement. If

an exponential decay for the flare radiation is assumed, then this leads to an en-

hancement of 16 percent above the pre and post flare values of solar radiation

which produces the signals in the shortest wavelength channels. Based on the

sensor response functions given in Figure 3. 8. 1, the enhancement shown for

sensor A should be due principally to H, Ly-a.
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Table 3. 1. 1. Number of Soundings Included in Each Mean

Model Atmosphere

Spring/Fall
Winter Summer Annual

Site Mar Apr May
Dec Jan Feb Jun Jul Aug Jan thru Dec

Sep Oct Nov

Natal-Ascension
_ - - 34

(6-8°S)

Wallops
28 24 41

(38° N)

Churchill
29 12 13

(59° N)

Barrow
19 17 10

(71°N)
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101

100

+s

1++

EQUATORIAL EARTH RADIANCE

+--+ COSMOS, IOZENAS,et.aI7

3

2500 3000

ordinate should be multiplied by 102 to read solar irradiance. The Earth radiance
measured by lozenas, et al. (1969) on the Cosmos satellites is shown for comparison
with the NIMBUS BUV measurements. Both measurements are from the equatorial
regions where the polarization is essentially zero. The agreement is quite good at
the long wavelength end; however, at 2555 A, the USSR measurement of the Earth
radiance is larger by about a factor of two. We believe that this discrepancy could
be due to stray light originating in the USSR instrument.
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CONTRIBUTION FUNCTION
Figure 2.2.3.2. Contribution to the backscattered radiation from various levels
in the atmosphere. Each curve is normalized to unity at level of maximum.
(Surface reflectivity = 0, solar zenith angle = 60 degrees, nadir angle of observa-
tion = 0 degree, total ozone = 0.336 atm-cm.)
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(c) CHURCHILL (59 0N) (d) BARROW (71 0 N)

Figure 3.1.1. Mean annual temperature profile for Natal-Ascension Island (6 S-8 S) based
on 34 soundings (a), mean seasonal temperature profiles for Wallops Island (38 N) based
on 28 winter, 24 summer and 41 transition soundings (b), for Churchill (59 N) based on
29 winter, 12 summer and 13 transition soundings (c), and for Barrow (71 N) based on
19 winter, 17 summer, and 10 transition soundings (d) (after Theon, et al., 1971).
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Figure 3.1.2. A quasi-meridional cross-section of temperature in degrees K derived from mean profiles in
Figure 3.1.1 (after Theon and Smith, 1970).
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Figure 3.1.3. A quasi-meridional cross-section of pressure as percent difference from the U.S. Standard
Atmosphere 1962, derived from mean profiles in Figure 3.1.1 (after Theon and Smith, 1970).
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(a)

(c) (d)

Figure 3.1.4. Mean winter circulation at 60 km (a), and 80 km (c) and mean summer circulation at 60 and
80 km (b and d respectively). Isobars are given in mb, wind in m sec-1 (after Theon and Smith, 1970).
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Figure 3.2.1. Temperature profiles at Natal (6 S). The soundings were separated in time by twelve hours.
(after Smith, et al., 1968b).
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Figure 3.2.2. Twelve hour temperature changes as a function of altitude at Natal compared with theoretical
change. (after Smith, et al., 1968b).
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Figure 3.2.5a. Summer temperature profiles at Barrow (71 N). (after Theon, 1968).

87



2348Z 31 JAN
0141Z 1 FEB
0418Z 1 FEB
0741Z 1 FEB
0956Z 1 FEB
1426Z 1 FEB

160 -180 200 220
TEMPERATURE

Figure 3.2.5b. Winter temperature profiles at Barrow in 1967.
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(after Smith, et al., 1968b).
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Figure 3.4.4. Progression of the final warming in the Northern Hemisphere stratosphere in 1964 (a) and
for the Southern Hemisphere in 1963 (b). Solid lines indicate the 230 K equivalent black-body isotherms
for the dates shown. (after Kennedy and Nordberg, 1967). :
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Figure 3.4.5. Stratospheric Temperature Distribution (K) from Nimbus 2 Measurements on June 10, 1966.
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Figure 3.4.6. Nimbus 3 IRIS temperatures (K) on April 29, 1969 for 50 mb level (a) and
for 10 mb level (b). (after Prabhakara et al.).
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Figure 3.4.7. Annual march of radiances measured with the SI RS at 15.0 PrM (669.3 cm- 1) for selected lati-
tudes showing the seasonal warming and cooling of the stratosphere. For each latitude indicated, measure-
ments were averaged daily over a 4-degree zone around the latitude circle. (after Fritz and Soules, 1970).
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Figure 3.4.8. Deviation of averaged latitudinal radiances measured with SIRS at
15/um from a least squares fit for 80 N to 80 S from April 14-October 10, 1969
showing close relationship between the Southern Hemisphere warming and cooling
periods in the high latitudes and corresponding cooling and warming periods in the
tropical and Northern Hemisphere latitudes. (after Fritz and Soules, 1970).
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100mbFigure 3.4.9. Meridional-temperature cross-sections from surface to the 0.5 mb pressure level derived from

200SCR measurements on 16 July 1970 18 September 1970 21 January 1971 and 16 March 1971. Data from2

3about twelve satellite pa0ses at longitudes progre$ing successively westward by about 30 degrees were

averaged for each latitude for each 24 hour period. (courtesy Williamson and Houghton).
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Figure 3.4.10. Cross-section of temperature deviation between the 300 and 0.5 mb levels at longitudes
around the 55-60 S latitude zone, from the mean temperatures for this latitude zone on 4 September (a),
6 September (b), and 9 September (c) 1970. Temperature deviations are shown in degree C. (courtesy
Williamson and Houghton).
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Figure 3.5.2.1. Meridional cross-section of ozone mass mixing ratio (#i gm gm- 1) in the atmospheric
pressure region from 10 to 0.2 mb derived from BUV earth radiance data at wavelengths from 2555 to
2976 A from Nimbus 4 orbit 1182 on July 5, 1970.
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TOTAL OZONE ABOVE 10mb AND 2.8mb

OZONE AMOUNTS IN 10 -4 ATM-CM
July 5, 1970

Figure 3.5.2.2. Contours of total ozone above 10 mb (top) and total ozone above 2.8 mb (bottom) for
northern and southern hemispheres on July 5, 1970 derived from BOV high altitude data.
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Figure 3.7.1. Atomic oxygen in the Mesosphere. Silver film measurements are presented as heavy solid line
and compared to calculations of Shimazaki and Laird (1970) (S&L) Hesstvedt (1968) (H), Keneshea and
Zimmerman (1970) (K&Z) and Rocket Mass Spectrometer Measurements of Hedin, et al. (1964) (after
Henderson, 1971).
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Figure 3.8.2. Time plot of MUSE sensor currents, with exponential decay factors removed, compared with
other indicators of solar activity. (Heath, 1971).
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(Heath, 1971).
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